MTH 201: Multivariable Calculus and Differential Equations

Homework VII

(Due 5/11)

1. Convert the following Cartesian integrals into equivalent polar integrals and then evaluate them.
(a) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$
(b) $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x$
(c) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x$
(d) $\int_{1}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e^{\sqrt{x^{2}+y^{2}}} d x d y$
(e) $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$
(f) $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y$
2. Integrate $f(x, y)=\frac{\ln \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}$ over the region $1 \leq x^{2}+y^{2} \leq e^{2}$.
3. Convert the integral

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x}\left(x^{2}+y^{2}\right) d z d x d y
$$

into an equivalent integral in cylindrical coordinates and evaluate.
4. Set up the interated integral for evaluating $\iiint_{D} f(r, \theta, z) r d z d r d \theta$ over the given region D.
(a) D is the right circular cylinder whose base is the circle $r=3 \cos \theta$ and top lies in the plane $z=5-x$.
(b) D is the solid right cylinder whose base is the region between the circles $r=\cos \theta$ and $r=2 \cos \theta$, and whose top lies in $z=3-y$.
(c) D is prism whose base is the triangle in the $x y$-plane bounded by the y-axis and the lines $y=x$ and $y=1$, and whose top lies in the plane $z=2-x$.
5. Find the spherical coordinate limits for the integral that calculates the volume of the given solid or region, and then evaluate the integral.
(a) The solid bounded below by $\rho=2 \cos \phi$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) The solid bounded below by the $x y$-plane, on the sides by the sphere $\rho=2$, and above by the cone $\phi=\pi / 3$.
(c) The solid enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.
(d) The region bounded below by the paraboloid $z=x^{2}+y^{2}$, laterally by the cylinder $x^{2}+y^{2}=1$, and above by the paraboloid $z=x^{2}+y^{2}+1$.
(e) The region cut from the solid cylinder $x^{2}+y^{2} \leq 1$ by the sphere $x^{2}+y^{2}+z^{2}=4$.
(f) The region enclosed by the cylinder $x^{2}+y^{2}=4$ and planes $z=0$ and $y+z=4$.

