MTH 201: Multivariable Calculus and Differential Equations Homework VII

(Due 5/11)

1. Convert the following Cartesian integrals into equivalent polar integrals and then evaluate them.

(a)
$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} (x^{2} + y^{2}) dx dy$$

(b)
$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} (x + 2y) dy dx$$

(c)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{(1 + x^{2} + y^{2})^{2}} dy dx$$

(d)
$$\int_{1}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2} - y^{2}}} e^{\sqrt{x^{2} + y^{2}}} dx dy$$

(e)
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy$$

(f)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(1 + x^{2} + y^{2})^{2}} dx dy$$

2. Integrate $f(x,y) = \frac{\ln(x^2 + y^2)}{\sqrt{x^2 + y^2}}$ over the region $1 \le x^2 + y^2 \le e^2$.

3. Convert the integral

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) \, dz \, dx \, dy$$

into an equivalent integral in cylindrical coordinates and evaluate.

- 4. Set up the interated integral for evaluating $\iint_D f(r, \theta, z) r dz dr d\theta$ over the given region D.
 - (a) D is the right circular cylinder whose base is the circle $r = 3\cos\theta$ and top lies in the plane z = 5 x.
 - (b) D is the solid right cylinder whose base is the region between the circles $r = \cos \theta$ and $r = 2\cos \theta$, and whose top lies in z = 3 - y.
 - (c) D is prism whose base is the triangle in the xy-plane bounded by the y-axis and the lines y = x and y = 1, and whose top lies in the plane z = 2 x.
- 5. Find the spherical coordinate limits for the integral that calculates the volume of the given solid or region, and then evaluate the integral.
 - (a) The solid bounded below by $\rho = 2\cos\phi$ and above by the cone $z = \sqrt{x^2 + y^2}$.
 - (b) The solid bounded below by the xy-plane, on the sides by the sphere $\rho = 2$, and above by the cone $\phi = \pi/3$.
 - (c) The solid enclosed by the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.
 - (d) The region bounded below by the paraboloid $z = x^2 + y^2$, laterally by the cylinder $x^2 + y^2 = 1$, and above by the paraboloid $z = x^2 + y^2 + 1$.
 - (e) The region cut from the solid cylinder $x^2 + y^2 \le 1$ by the sphere $x^2 + y^2 + z^2 = 4$.
 - (f) The region enclosed by the cylinder $x^2 + y^2 = 4$ and planes z = 0 and y + z = 4.